Perfect Secrecy and One-Time Pads CS/ECE 407

Today's objectives

Learn basic cryptographic vocabulary

Explain one-time pad encryption

Define perfect secrecy

Describe limitations of perfect secrecy

Course Structure

Symmetric key cryptography (Alice and Bob have a common key)

Public Key Cryptography (Alice and Bob do not have a common key)

Beyond Secure communication (Alice does not fully trust Bob)

Confidentiality Can Alice and Bob prevent Eve from listening?

Substitution Cipher

 $\begin{array}{ccc} a & \rightarrow & J \\ b & \rightarrow & Y \\ c & \rightarrow & Z \\ d & \rightarrow & K \\ e & \rightarrow & C \\ f & \rightarrow & I \end{array}$

 $\bullet \bullet \bullet$

Broken! E.g., use frequency analysis!

cryptographyiscool

ZBGNRXPBJNDGQFZXXA

$26! \approx 2^{72}$ possible keys

Substitution Cipher

 $\begin{array}{ccc} a & \rightarrow & J \\ b & \rightarrow & Y \\ c & \rightarrow & Z \\ d & \rightarrow & K \\ e & \rightarrow & C \\ f & \rightarrow & I \end{array}$

 $\bullet \bullet \bullet$

Broi.en! E.g.,

aphyiscool

PXPBJNDGQFZXXA

possible keys

Broken! E.g., use frequency analysis!

Modern Cryptography

State assumptions

Define security

Design system

Prove: if assumption holds, system meets definition

Modern Cryptography

Define security

Design system

State assumptions Today: Understand why this is needed

Prove: if assumption holds, system meets definition

Alice $m \in \{0,1\}$

Alice $m \in \{0,1\}$ *k* ←_{\$} {0,1}

 $k \leftarrow_{\$} \{0,1\}$

 $k \leftarrow_{\$} \{0,1\}$

0	1
0	1
1	0

$k \leftarrow_{\$} \{0,1\}$ $m' \leftarrow ct \bigoplus k$

0	1
0	1
1	0

What are we not hiding?

 $k \leftarrow_{\$} \{0,1\}$ $m' \leftarrow ct \bigoplus k$

What are we not hiding? We do not hide that a message exists

Eve

$k \leftarrow_{\$} \{0,1\}$ $m' \leftarrow ct \oplus k$

We are cryptographers, not steganographers

What are we not hiding?

We do not hide that a message exists We do not hide message length

We do not hide the protocol

$k \leftarrow_{\$} \{0,1\}$ $m' \leftarrow ct \oplus k$

We are cryptographers, not steganographers

Kerckhoffs's principle

$k \leftarrow_{\$} \{0,1\}$ $m' \leftarrow ct \oplus k$

Question: Is it possible to achieve encryption without a key?

Modern Cryptography

State assumptions

Define security

Design system

Prove: if assumption holds, system meets definition

Symmetric Cipher A cipher over (K, M, C) is two algorithms: $Enc: \mathbf{K} \times \mathbf{M} \rightarrow \mathbf{C}$ $Dec: \mathbf{K} \times \mathbf{C} \to \mathbf{M}$

Symmetric Cipher A cipher over (K, M, C) is two algorithms: $Enc: \mathbf{K} \times \mathbf{M} \rightarrow \mathbf{C}$ $Enc(k,m) := k \oplus m$ $Dec(k, ct) := k \oplus ct$ $Dec: K \times C \rightarrow M$

Symmetric Cipher A cipher over (K, M, C) is two algorithms: $Enc: \mathbf{K} \times \mathbf{M} \rightarrow \mathbf{C}$ $Enc(k,m) := k \oplus m$ $Dec(k, ct) := k \oplus ct$ $Dec: K \times C \rightarrow M$

Correctness:

Symmetric Cipher A cipher over (K, M, C) is two algorithms: $Enc: \mathbf{K} \times \mathbf{M} \rightarrow \mathbf{C}$ $Enc(k,m) := k \oplus m$ $Dec(k, ct) := k \oplus ct$ $Dec: K \times C \rightarrow M$

Correctness: Dec(k, Enc(k, m)) = m

Symmetric Cipher A cipher over (K, M, C) is two algorithms: $Enc: \mathbf{K} \times \mathbf{M} \rightarrow \mathbf{C}$ $Dec: \mathbf{K} \times \mathbf{C} \to \mathbf{M}$

Correctness: Dec(k, Enc(k, m)) = m

 $Enc(k,m) := k \oplus m$ $Dec(k, ct) := k \oplus ct$

Dec(k, Enc(k, m))

Symmetric Cipher A cipher over (K, M, C) is two algorithms: $Enc: \mathbf{K} \times \mathbf{M} \rightarrow \mathbf{C}$ $Enc(k,m) := k \oplus m$ $Dec(k, ct) := k \oplus ct$ $Dec: \mathbf{K} \times \mathbf{C} \to \mathbf{M}$

Correctness:

 $k \oplus (k \oplus m) = m$

Symmetric Cipher A cipher over (K, M, C) is two algorithms: $Enc: \mathbf{K} \times \mathbf{M} \rightarrow \mathbf{C}$ $Dec: K \times C \rightarrow M$

Correctness: Dec(k, Enc(k, m)) = m

Confidentiality

Symmetric Cipher A cipher over (K, M, C) is two algorithms: $Enc: \mathbf{K} \times \mathbf{M} \rightarrow \mathbf{C}$ $Dec: K \times C \rightarrow M$

Correctness: Dec(k, Enc(k, m)) = m

Perfect Secrecy:

Symmetric Cipher A cipher over (K, M, C) is two algorithms: $Enc: \mathbf{K} \times \mathbf{M} \rightarrow \mathbf{C}$ $Dec: \mathbf{K} \times \mathbf{C} \to \mathbf{M}$

Correctness: Dec(k, Enc(k, m)) = m

Perfect Secrecy:

For every pair of messages $m_0, m_1 \in M$ and every cipher text $c \in C$: Pr [$Enc(k, m_0) = c$] = Pr [$Enc(k, m_1) = c$] *k*←K *k*←K

Symmetric Cipher A cipher over (K, M, C) is two algorithms: $Enc: \mathbf{K} \times \mathbf{M} \rightarrow \mathbf{C}$ $Dec: K \times C \rightarrow M$

Correctness: Dec(k, Enc(k, m)) = m

Perfect Secrecy: $k \leftarrow \{0,1\}$

 $Enc(k,m) := k \oplus m$ $Dec(k, ct) := k \oplus ct$

For every pair of messages $m_0, m_1 \in \{0,1\}$ and every cipher text $c \in \{0,1\}$: Pr [$Enc(k, m_0) = c$] = Pr [$Enc(k, m_1) = c$] $k \leftarrow \{0, 1\}$

Symmetric Cipher A cipher over (K, M, C) is two algorithms: $Enc: \mathbf{K} \times \mathbf{M} \rightarrow \mathbf{C}$ $Dec: K \times C \rightarrow M$

Correctness: Dec(k, Enc(k, m)) = m

Perfect Secrecy:

For every pair of messages $m_0, m_1 \in \{0, 1\}$ and every cipher text $c \in \{0, 1\}$: Pr $[k \oplus m_0 = c] = \Pr[k \oplus m_1 = c]$ $k \leftarrow \{0, 1\}$ $k \leftarrow \{0,1\}$

Question: what if Alice wants to send more than one bit?

$m' \leftarrow ct \oplus k$

 $k \leftarrow_{\$} \{0,1\}$ $m' \leftarrow ct \oplus k$

$k \leftarrow_{\$} \{0,1\}$ $m' \leftarrow ct \oplus k$

Key k is a one-time pad

Perfect Secrecy:

For every pair of messages $m_0, m_1 \in M$ and every cipher text $c \in C$: $\Pr_{k \leftarrow K} [Enc(k, m_0) = c] = \Pr_{k \leftarrow K} [Enc(k, m_1) = c]$

Theorem [Shannon 1949]: Any cipher achieving perfect secrecy requires that $|K| \ge |M|$.

Perfect Secrecy:

For every pair of messages $m_0, m_1 \in M$ and every cipher text $c \in C$: $\Pr_{k \leftarrow K} [Enc(k, m_0) = c] = \Pr_{k \leftarrow K} [Enc(k, m_1) = c]$

Theorem [Shannon 1949]: Any cipher achieving perfect secrecy requires that $|K| \ge |M|$.

Bad News! We will need another approach!

Perfect Secrecy:

For every pair of messages $m_0, m_1 \in M$ and every cipher text $c \in C$: $\Pr_{k \leftarrow K} [Enc(k, m_0) = c] = \Pr_{k \leftarrow K} [Enc(k, m_1) = c]$

Theorem [Shannon 1949]: Any cipher achieving perfect secrecy requires that $|K| \ge |M|$.

Bad News! We will need another approach! Key idea: what if we can make something that *looks* random, but actually isn't

Modern Cryptography

Define security

Design system

State assumptions Today: Understand why this is needed

Prove: if assumption holds, system meets definition

Today's objectives

Learn basic cryptographic vocabulary

Explain one-time pad encryption

Define perfect secrecy

Describe limitations of perfect secrecy